Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Butyl-4-hydroxy-3-methylquinoline-2(1H)-one

Zuzana Kozubková, ${ }^{\text {a }}$ Marek Nečas ${ }^{\text {b }}$ and Robert Vícha ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
Correspondence e-mail: rvicha@ft.utb.cz

Received 8 November 2010; accepted 10 November 2010
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.086$; data-to-parameter ratio $=13.2$.

In the crystal of the title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$, molecules are arranged into chains along the b axis linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. While the benzene ring is essentially planar, with a maximum deviation from the best plane of 0.003 (1) A , the pyridine ring is slightly V -shaped: the distance of the carbonyl C atom from the benzene best plane is 0.120 (1) \AA. The hydroxy group is inclined markedly towards the benzene ring reducing the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ bond angle to $113.21(10)^{\circ}$.

Related literature

For the preparation, see: Stadlbauer \& Kappe (1985). The title compound is a member of a group of substituted 4-hydroxy-quinoline-2-ones used for preparation of new classes of heterocyclic systems, see: Klásek et al. (1998); Kafka et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=231.29$
Monoclinic, $P 2_{1} / \mathrm{c}$
$a=11.8576$ (7) \AA
$b=10.7790$ (6) \AA
$c=9.8835$ (7) \AA
$\beta=110.749(7)^{\circ}$

$$
\begin{aligned}
& V=1181.31(13) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& 0.40 \times 0.40 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.086$
157 parameters
H -atom parameters constrained
$S=0.99$
2077 reflections

Diffraction, 2009)
$T_{\text {min }}=0.978, T_{\text {max }}=1.000$
4533 measured reflections 2077 independent reflections 1625 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.011$

H-atom parameters
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.86	$2.6529(14)$	156
Symmetry code: $(\mathrm{i})-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Financial support of this work by the internal grant of TBU in Zlín No. IGA/7/FT/10/D, funded from the resources of specific university research, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2326).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kafka, S., Klásek, A., Polis, J. \& Košmrlj, J. (2002). Heterocycles, 57, 1659-1682.
Klásek, A., Kafka, S., Polis, J. \& Košmrlj, J. (1998). Heterocycles, 48, 2309-2326.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stadlbauer, W. \& Kappe, T. (1985). Monatsch. Chem. 116, 1005-1015.

supplementary materials

Acta Cryst. (2010). E66, o3196 [doi:10.1107/S160053681004643X]

1-Butyl-4-hydroxy-3-methylquinoline-2(1H)-one

Z. Kozubková, M. Necas and R. Vícha

Comment

Quinoline derivatives are well known and extensively studied especially for their wide occurance in nature and for their rich spectrum of biological activities. The title compound is a member of the group of substituted 4-hydroxyquinoline-2-ones used for preparation of new classes of heterocyclic systems (Klásek et al., 1998; Kafka et al., 2002).

The molecule of the title compound (Fig. 1) consists of fused benzene and pyridine rings. The benzene ring is essentially planar with a maximum deviation from the best plane of 0.0026 (12) \AA for C6. The pyridine ring is slightly bent along the $\mathrm{N} 1-\mathrm{C} 3$ line with torsion angles $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ being $5.79(17)$ and $-6.38(18)^{\circ}$, respectively. The geometry around C3 markedly differs from the ideal pattern for a $s p^{2}$ carbon. All involved atoms $\mathrm{C} 4-\mathrm{C} 2$ and O 1 lie in the plane of the phenyl ring (maximum deviation from the best plane is 0.0083 (12) \AA for C3) but the valence angles $\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$ are 113.21 (10) and $125.91(11)^{\circ}$. Molecules are linked via $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 \mathrm{H}$-bonds (Fig. 2, Table 1) into chains parallel to the b-axis.

Experimental

Title compound was prepared according to a slightly modified procedure published by Stadlbauer \& Kappe (1985). A mixture of N-butylaniline ($16 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol}$) and diethyl methylmalonate $\left(17.2 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol}\right)$ was gradually heated in a Wood's metal bath at $413-553 \mathrm{~K}$ for 6 h . The reaction was stopped when the amount of condensed ethanol reaches about 93% of the theoretical value. The hot mixture was poured on a metal plate and the crude product was quantitatively transferred into a $500 \mathrm{~cm}^{3}$ Erlenmeyer flask. After addition of $300 \mathrm{~cm}^{3}$ of 0.5 M NaOH and $50 \mathrm{~cm}^{3}$ of toluene the resulting mixture was stirred for 1 h . The suspension was extracted twice with $40 \mathrm{~cm}^{3}$ of toluene and the collected organic portions were treated with powdered activated carbon for 30 min at room temperature. The activated carbon was filtered off and approximately $300-400 \mathrm{~cm}^{3}$ of $5 \% \mathrm{HCl}$ was added gradually into the filtrate. The precipitated crude product were filtered with suction and washed with water until neutral pH . Single crystals for X-ray analysis were grown by spontaneous evaporation from deuterochloroform at room temperature.

Refinement

Hydrogen atoms were positioned geometrically and refined as riding using standard SHELXL-97 facilities, with their $\mathrm{U}_{\text {iso }}$ set to either $1.2 \mathrm{U}_{\mathrm{eq}}$ or $1.5 \mathrm{U}_{\mathrm{eq}}$ (methyl) of their parent atoms.

supplementary materials

Figures

Fig. 1. Anisotropic displacement view of the asymmetric unit with atoms represented as 50% probability ellipsoids.

1-Butyl-4-hydroxy-3-methylquinoline-2(1H)-one

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
$F(000)=496$
$M_{r}=231.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.8576$ (7) \AA
$b=10.7790(6) \AA$
$c=9.8835(7) \AA$
$\beta=110.749$ (7) ${ }^{\circ}$
$V=1181.31(13) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.300 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 471 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2482 reflections
$\theta=3.0-27.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, yellow
$0.40 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 detector
Radiation source: Enhance (Mo) X-ray Source
graphite
Detector resolution: 8.4353 pixels mm^{-1}

ω scans

Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.978, T_{\text {max }}=1.000$
4533 measured reflections

2077 independent reflections
1625 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\min }=3.0^{\circ}$
$h=-13 \rightarrow 14$
$k=-9 \rightarrow 12$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.086$
$S=0.99$

2077 reflections
157 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0533 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.15$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.58070(7)$	$0.83511(7)$	$0.20280(9)$	$0.0221(2)$
O2	$0.59308(7)$	$1.27747(7)$	$0.19762(9)$	$0.0210(2)$
H2A	0.5408	1.2746	0.2368	0.031^{*}
N1	$0.68444(8)$	$0.93464(9)$	$0.08212(10)$	$0.0165(2)$
C1	$0.61444(10)$	$0.93675(11)$	$0.16869(12)$	$0.0168(3)$
C2	$0.58304(10)$	$1.05481(11)$	$0.21508(12)$	$0.0164(3)$
C3	$0.62176(10)$	$1.16166(11)$	$0.17139(12)$	$0.0161(3)$
C4	$0.70374(10)$	$1.15797(11)$	$0.09202(12)$	$0.0166(3)$
C5	$0.75484(10)$	$1.26662(11)$	$0.06041(13)$	$0.0194(3)$
H5A	0.7342	1.3447	0.0898	0.023^{*}
C6	$0.83446(11)$	$1.26165(12)$	$-0.01253(13)$	$0.0220(3)$
H6A	0.8688	1.3357	-0.0330	0.026^{*}
C7	$0.86408(10)$	$1.14718(12)$	$-0.05593(13)$	$0.0227(3)$
H7A	0.9185	1.1437	-0.1070	0.027^{*}
C8	$0.81590(10)$	$1.03880(11)$	$-0.02618(13)$	$0.0195(3)$
H8A	0.8376	0.9615	-0.0562	0.023^{*}
C9	$0.73476(10)$	$1.04230(11)$	$0.04853(12)$	$0.0164(3)$
C10	$0.50878(10)$	$1.05049(11)$	$0.31107(13)$	$0.0206(3)$

H10A	0.5068	1.1331	0.3516	0.031^{*}
H10B	0.5448	0.9913	0.3899	0.031^{*}
H10C	0.4264	1.0243	0.2542	0.031^{*}
C11	$0.70685(10)$	$0.81262(11)$	$0.02898(13)$	$0.0183(3)$
H11A	0.7145	0.8233	-0.0669	0.022^{*}
H11B	0.6368	0.7580	0.0164	0.022^{*}
C12	$0.82009(10)$	$0.75039(12)$	$0.13077(13)$	$0.0198(3)$
H12A	0.8072	0.7273	0.2212	0.024^{*}
H12B	0.8877	0.8103	0.1561	0.024^{*}
C13	$0.85459(11)$	$0.63463(12)$	$0.06562(14)$	$0.0251(3)$
H13A	0.7849	0.5773	0.0332	0.030^{*}
H13B	0.8742	0.6585	-0.0203	0.030^{*}
C14	$0.96221(11)$	$0.56796(11)$	$0.17331(14)$	$0.0253(3)$
H14A	0.9855	0.4982	0.1252	0.038^{*}
H14B	0.9405	0.5369	0.2540	0.038^{*}
H14C	1.0300	0.6258	0.2101	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0251(5)$	$0.0147(5)$	$0.0314(5)$	$-0.0013(4)$	$0.0161(4)$	$0.0010(4)$
O2	$0.0232(5)$	$0.0150(5)$	$0.0303(5)$	$0.0007(4)$	$0.0164(4)$	$-0.0005(4)$
N1	$0.0173(5)$	$0.0139(6)$	$0.0198(5)$	$-0.0004(4)$	$0.0085(4)$	$-0.0015(4)$
C1	$0.0153(6)$	$0.0165(7)$	$0.0178(6)$	$-0.0014(5)$	$0.0052(5)$	$0.0013(5)$
C2	$0.0139(6)$	$0.0178(7)$	$0.0170(6)$	$0.0007(5)$	$0.0047(5)$	$0.0004(5)$
C3	$0.0153(6)$	$0.0140(7)$	$0.0171(6)$	$0.0015(5)$	$0.0034(5)$	$-0.0016(5)$
C4	$0.0146(6)$	$0.0176(7)$	$0.0159(6)$	$0.0005(5)$	$0.0035(5)$	$0.0011(5)$
C5	$0.0208(6)$	$0.0165(7)$	$0.0201(7)$	$0.0001(5)$	$0.0061(5)$	$0.0007(5)$
C6	$0.0235(6)$	$0.0205(7)$	$0.0238(7)$	$-0.0053(5)$	$0.0107(5)$	$0.0026(6)$
C7	$0.0213(6)$	$0.0279(8)$	$0.0219(7)$	$-0.0007(6)$	$0.0113(5)$	$0.0017(6)$
C8	$0.0199(6)$	$0.0201(7)$	$0.0196(7)$	$0.0016(5)$	$0.0082(5)$	$-0.0021(5)$
C9	$0.0148(6)$	$0.0177(7)$	$0.0149(6)$	$-0.0013(5)$	$0.0032(5)$	$0.0011(5)$
C10	$0.0241(6)$	$0.0156(7)$	$0.0262(7)$	$0.0004(5)$	$0.0138(5)$	$0.0002(5)$
C11	$0.0207(6)$	$0.0144(7)$	$0.0216(7)$	$-0.0020(5)$	$0.0096(5)$	$-0.0037(5)$
C12	$0.0214(6)$	$0.0176(7)$	$0.0217(6)$	$-0.0006(5)$	$0.0093(5)$	$-0.0011(5)$
C13	$0.0265(7)$	$0.0212(7)$	$0.0262(7)$	$0.0039(6)$	$0.0074(6)$	$-0.0021(6)$
C14	$0.0282(7)$	$0.0220(7)$	$0.0271(7)$	$0.0050(6)$	$0.0115(6)$	$0.0017(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.2528(13)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.3429(13)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8400
$\mathrm{~N} 1-\mathrm{C} 1$	$1.3873(15)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.3976(14)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.4749(14)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4454(16)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3655(16)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.5064(15)$

sup-4

supplementary materials

C3-C4	1.4499 (16)
C4-C5	1.4037 (16)
C4-C9	1.4095 (15)
C5-C6	1.3771 (16)
C5-H5A	0.9500
C6-C7	1.3915 (17)
C6-H6A	0.9500
C7-C8	1.3772 (16)
C7-H7A	0.9500
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	122.14 (10)
C1-N1-C11	117.19 (9)
C9-N1-C11	120.66 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	118.00 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.81 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	119.19 (10)
C3-C2-C1	119.28 (11)
C3-C2-C10	124.21 (11)
C1-C2-C10	116.51 (10)
O2-C3-C2	125.91 (10)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	113.21 (10)
C2-C3-C4	120.86 (10)
C5-C4-C9	119.36 (11)
C5-C4-C3	121.50 (11)
C9-C4-C3	119.12 (10)
C6-C5-C4	120.94 (12)
C6-C5-H5A	119.5
C4-C5-H5A	119.5
C5-C6-C7	119.38 (11)
C5-C6-H6A	120.3
C7-C6-H6A	120.3
C8-C7-C6	121.15 (11)
C8-C7-H7A	119.4
C6-C7-H7A	119.4
C7-C8-C9	120.16 (11)
C7-C8-H8A	119.9
C9-C8-H8A	119.9
N1-C9-C8	122.13 (11)
N1-C9-C4	118.85 (10)
C8-C9-C4	119.02 (11)

C12-H12A	0.9900
C12-H12B	0.9900
C13-C14	1.5217 (16)
C13-H13A	0.9900
C13-H13B	0.9900
C14-H14A	0.9800
C14-H14B	0.9800
C14-H14C	0.9800
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
H10A-C10-H10B	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
N1-C11-C12	112.73 (9)
N1-C11-H11A	109.0
C12-C11-H11A	109.0
N1-C11-H11B	109.0
C12-C11-H11B	109.0
H11A-C11-H11B	107.8
C11-C12-C13	112.83 (10)
C11-C12-H12A	109.0
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.0
C11-C12-H12B	109.0
C13-C12-H12B	109.0
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	107.8
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	112.02 (10)
C14-C13-H13A	109.2
C12-C13-H13A	109.2
C14-C13-H13B	109.2
C12-C13-H13B	109.2
H13A-C13-H13B	107.9
C13-C14-H14A	109.5
C13-C14-H14B	109.5
H14A-C14-H14B	109.5
C13-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5

Hydrogen-bond geometry (\AA, $\left.{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.86	$2.6529(14)$	156

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

C12

C14

supplementary materials

Fig. 2

